Apresentação

O nosso departamento congrega docente que atuam em diversas áreas de pesquisa, notadamente Ciências dos Materiais, Física Computacional, Astrofísica, Cosmologia e Gravitação, Big Bang, Matéria Escura, Energia Escura, Relatividade Geral e teorias gravitacionais alternativas.. Temos um curso de bacharelado em física com ênfases em ciências dos materiais e física básica e um curso de Licenciatura em Física. Atuamos nos cursos de Pós-graduação em Física de Materiais (FIMAT), Rede Temática em Engenharia de Materiais - REDEMAT, Mestrado Profissional em Estudo de Ciência (MPEC) e outros programas em colaboração com outros departamentos da UFOP. 

Museu Virtual de Ensino de Física

physicsvirtualmuseum

Horário das Aulas - DEFIS

                 horário

Roteiros de Práticas para FIS105

Roteiros de Práticas para FIS105 – Fundamentos de Física Experimental

PET Fisica - UFOP

PET

TV-DEFIS

tvdefisyou
monitoria

Publicações Recentes do Departamento de Física

Gonçalves JA, dos Santos OFP, Batista RJC, Azevedo S. First-principle investigation of silicon carbide nanosheets fluorination: Stability trends, electronic, optical and magnetic properties. Chemical Physics Letters [Internet]. 2022;787 :139266. Publisher's VersionAbstract
We employed first-principles calculations to investigate the fluorination of silicon carbide nanosheets. We found that the Si atoms are the energetically favorable adsorption sites for F atoms in silicon carbide nanosheets in all studied cases. The strain caused by the fourfold coordinated Si atoms in the flat SiC nanosheet determines the relative position of the adsorbed F atoms: occupying nearest-neighbor Si sites if they bound sheet’s opposing sides or away from each other if they are on the same side of the sheet. The fluorinated nanosheets’ electronic and magnetic properties are weakly dependent on which side of the sheet the F atoms bind; however, they are strongly dependent on the relative distance between them. For F atoms adsorbed on nearest-neighbor Si sites, the system is a small gap p-type semiconductor with 1 μB per adsorbed atom. On the other hand, if F atoms do not occupy nearest-neighbor Si sites, the system is a metal with 1/2 μB per adsorbed atom. The adsorption of F atoms strongly affects the optical properties of SiC sheets inducing optical anisotropy regarding the direction of the incidence of light.
Fabris JC, Ottoni T, Toniato JD, Velten H. Stellar Structure in a Newtonian Theory with Variable G. Physics [Internet]. 2021;3 (4) :1123–1132. Publisher's VersionAbstract
A Newtonian-like theory inspired by the Brans–Dicke gravitational Lagrangian has been recently proposed by us. For static configurations, the gravitational coupling acquires an intrinsic spatial dependence within the matter distribution. Therefore, the interior of astrophysical configurations may provide a testable environment for this approach as long as no screening mechanism is evoked. In this work, we focus on the stellar hydrostatic equilibrium structure in such a varying Newtonian gravitational coupling G scenario. A modified Lane–Emden equation is presented and its solutions for various values of the polytropic index are discussed. The role played by the theory parameter ω, the analogue of the Brans–Dicke parameter, in the physical properties of stars is discussed.
Castro-e-Silva A, Bernardes AT, Gon\c calves Barbosa EA, Dáttilo W, RIBEIRO SÉRVIOP. Successive pandemic waves with more virulent strains, and the effects of vaccination for SARS-CoV-2. medRxiv [Internet]. 2021. Publisher's VersionAbstract
Hundred years after the flu pandemic of 1918, the world faces an outbreak of a new severe acute respiratory syndrome, caused by a novel coronavirus. With a high transmissibility, the pandemic spreads worldwide, creating a scenario of devastation in many countries. By the middle of 2021, about 3% of the world population has been infected and more than 4 million people have died. Different from the H1N1 pandemic, which had a deadly wave and cessed, the new disease is maintained by successive waves, mainly produced by new virus variants, and the small number of vaccinated people. In the present work, we create a version of the SIR model with spatial localization of persons, their movements, and taking into account social isolation probabilities. We discuss the effects of virus variants, and the role of vaccination rate in the pandemic dynamics. We show that, unless a global vaccination is implemented, we will have continuous waves of infections.HighlightsThe COVID-19 has infected more than 200 millions and has killed more than 4 million persons.WHO has not been successful in defining a global vaccination policy.Many epidemic scenarios arise when different countries apply different vaccination strategies.Present model can show some insights on how vaccination programs can be managed.Competing Interest StatementThe authors have declared no competing interest.Funding StatementThis research did not receive any specific grant from funding agencies in the commercial, or non-profit sectors. SPR acknowledges grant from Conselho Nacional de Desenvolvimento Cientifico e Tecnologico - CNPq, through proccess 306572/2019-2.Author DeclarationsI confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.YesThe details of the IRB/oversight body that provided approval or exemption for the research described are given below:The manuscript is a modeling paper, there was no clinical trial of any kind.All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.YesI understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).YesI have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.YesThe code of model is included in manuscript files.
More

Publicações de Livros do Departamento de Física

d s t q q s s
 
1
 
2
 
3
 
4
 
5
 
6
 
7
 
8
 
9
 
10
 
11
 
12
 
13
 
14
 
15
 
16
 
17
 
18
 
19
 
20
 
21
 
22
 
23
 
24
 
25
 
26
 
27
 
28
 
29
 
30
 
31