Electronic Properties of Curved Few-Layers Graphene: A Geometrical Approach


Cariglia M, Giambò R, Perali A. Electronic Properties of Curved Few-Layers Graphene: A Geometrical Approach. Condensed Matter [Internet]. 2018;3 (2, ARTICLE NUMBER = 1).


We show the presence of non-relativistic Lévy-Leblond fermions in flat three- and four-layers graphene with AB stacking, extending the results obtained in Cariglia et al. 2017 for bilayer graphene. When the layer is curved we obtain a set of equations for Galilean fermions that are a variation of those of Lévy-Leblond with a well defined combination of pseudospin, and that admit Lévy-Leblond spinors as solutions in an approriate limit. The local energy of such Galilean fermions is sensitive to the intrinsic curvature of the surface. We discuss the relationship between two-dimensional pseudospin, labelling layer degrees of freedom, and the different energy bands. For Lévy-Leblond fermions, an interpretation is given in terms of massless fermions in an effective 4D spacetime, and in this case the pseudospin is related to four dimensional chirality. A non-zero energy band gap between conduction and valence electronic bands is obtained for surfaces with positive curvature.

Publisher's Version

Last updated on 05/11/2018